If you wish to measure the degree of a liquid easily and reliably, most people will do this using hydrostatic pressure measurement, e.g. with a submersible pressure transmitter or perhaps a so called level probe. The characteristic submersed application implicates a maximum exposure to the encompassing, mainly water-based medium, respectively to ?moisture?.
Exposure isn’t only limited by the wetted elements of the pressure sensor housing, but additionally to the entire immersed amount of the cable. Furthermore, beyond your directly immersed level probe parts, the cable, and specifically the cable end, tend to be exposed to moisture because of splash water, rain and condensation. This is true not only during operation, but a lot more during installation and commissioning, or when maintenance or retrofitting is required. Irrespective of the mark application, whether in water and wastewater treatment or in tank monitoring, moisture ingress in to the cable ends of the submersible pressure transmitter can occur early and irreversibly with insufficient protection measures, and, in virtually all cases, result in premature failure of the instrument.
The ingress of moisture in to the cable outlet and from there on downwards into the electronics of the level probe must be actively eliminated by preventive actions by the user. To gauge the level with highest accuracy, the varying ambient pressure above the liquid media, that is also ?resting? on the liquid, should be compensated contrary to the hydrostatic pressure functioning on the pressure sensor (see article: hydrostatic level measurement).
Ventilation tube
Thus, it really is logical that there is a constant threat of a moisture-related failure because of moisture ingress (both via the ventilation tube and through the actual cable itself) if there are no adequate precautionary measures. To pay the ambient pressure ?resting? on the media, a ventilation tube runs from the sensor element within the particular level probe, through the cable and out from the level probe by the end of the cable. Due to capillary action within the ventialation tube useful for ambient pressure compensation, moisture can even be transported from the encompassing ambience down to the sensor.
Thus not merely air, but also moisture penetrates into the tube, hence the sensor in the probe and the electronics around it can be irreparably damaged. This can lead to measurement errors and, in the worst case, even to failure of the level probe. To prevent any premature failure, the ingress of moisture in to the ventilation tube must be completely prevented. Additional protection against moisture penetration through the ventilation tube is supplied by fitting an air-permeable, but water-impermeable filter element at the end of the vent tube.
bare wires
Never to be ignored is also the transport of the liquid through high-humidity loads along the only limitedly protected internals of the cable, e.g. across the wires, completely right down to the submersible pressure transmitter. As a leading manufacturer, WIKA uses appropriate structural design to avoid fluid transport, so far as possible, into the electronics of the submersible pressure transmitter. Due to molecular diffusion and capillary effects, a guaranteed one-hundred percent protection on the full lifetime of the submersible pressure transmitter, however, is never achievable.
Hence, it is recommended that the cable is always terminated in a waterproof junction box with the appropriate IP protection (e.g. IP65) which is matched to the installation location. If this cable junction box is exposed to weather and varying temperature conditions, it is also recommended to pay focus on a controlled pressure equalisation in order to avoid the formation of condensation or perspiration water and pumping effects. To handle this technical requirement, being an accessory to a submersible pressure transmitter, it is possible to order a link box with an integrated air-permeable, water-impermeable membrane.
Ultimately, pressure gauge 10 bar can occur not merely through the exposed end of the cable, but also through mechanical harm to the cable sheath or as a result of liquid diffusion due to improper chemical resistance of the cable material. In this article ?Selection criteria for the prevention of moisture-related failures of submersible pressure transmitters or level probes? this failure mode is described in detail.
WIKA offers comprehensive solutions for the hydrostatic-pressure level measurement. For further assistance in selecting the submersible pressure transmitter most suitable for the application, please use our contact page.
Please find more info on this topic on our information platform ?Hydrostatic level measurement?